李国栋
更新时间:2023-09-21姓名:李国栋
性别:男
出生年月:1985.12
职称/职务:教授/副经理
学位/学历:博士
联系电话:18327287001
邮箱:guodonglee@whut.edu.cn
个人简历:(教育经历/工作经历)
2003.09-2007.06 122cc太阳集成游戏 工程力学 本科 学士
2007.09-2010.06 122cc太阳集成游戏 固体力学 研究生 硕士
2010.09-2013.06 122cc太阳集成游戏 固体力学 研究生 博士
2014.03-2015.07 美国加州理工学院(California Institute of Technology) 材料系 博士后
2015.07-2018.08 美国西北大学 (Northwestern University) 材料系 博士后
2018.12-至今 122cc太阳集成游戏 122cc太阳集成游戏 教授、博导
研究方向:材料力学、微纳力学、材料设计
主要教学/科研成果:
先后获得国家自然科学基金委优秀青年基金、湖北省博士后卓越人才跟踪培养计划、武汉市黄鹤英才优秀青年人才、122cc太阳集成游戏“青年科技标兵”、122cc太阳集成游戏“青年教师十大科技进展”、122cc太阳集成游戏科学技术奖(自然科学类)特等奖、122cc太阳集成游戏优秀共产党员、122cc太阳集成游戏先进工作者等荣誉。以第1/通讯作者在Matter(2)、Mater. Sci. Eng. R (1)、Adv. Mater. (1)、Phys. Rev. Lett. (2)、Adv. Func. Mater. (1)、Chem. Mater. (4)、 Acta. Mater. (3)等国际著名SCI刊物发表论文50余篇。
主要科研项目:
(1) 国家自然科学基金委员会, 重大研究计划重点项目课题, 多维度功能基元及序构与变革性热电材料研究, 2022-01-01 至 2025-12-31, 143万元, 主持
(2) 国家自然科学基金委员会, 优秀青年科学基金项目, 热电材料与微型器件的本征力学性能增强理论与应用, 2021-01-01 至 2023-12-31, 150万元, 主持
(3) 武汉市科学技术局, 武汉市知识创新专项(基础研究), 纳米孪晶对(Ga,In)Sb热电材料热传导和力学行为的影响机制研究, 2022-06 至 2024-06, 20万元, 主持
(4) 湖北省科技厅, 湖北省自然科学基金青年项目, 纳米孪晶对Bi2Te3基热电材料力学性能
的影响机制研究, 2020-03 至 2022-03, 5万元, 主持
学术兼职:
国际期刊《Acta Mechanica Sinica》和《Interdisciplinary Materials》期刊编委。
代表性论文:
2024
[1] Zhou, X; Wang, S; Lu, Z; Huang, X; Feng, X; Fu, J; Li, W; Zhai, P; Li, G *. The role of γ/γ interfacial spacing on the tensile behavior in lamellar TiAl alloy via molecular dynamics simulations[J]. Acta Mechanica Sinica, 2024, 41, 124030.
[2] Sheng, L; Zhai, P; Huang, X; Ma, H; Huang, B; Li, W; Chen, G; Duan, B; Feng, X; Li, G *. Strengthening and toughening mechanisms of γ-TiAl dominated by shear induced " catching bonds"[J]. Journal of Alloys and Compounds, 2024, 1010, 177385.
[3] Wang, S; Zhou, X; Lu, Z; Huang, X; He, L; Feng, X; Li, W; Zhai, P; Li, G *. Size-dependent deformation mechanisms in two-phase γ-TiAl/ α2-Ti3Al alloys[J]. Scripta Materialia, 2024, 254, 116330.
[4] Huang, X; Li, J; Ma, H; Li, C; Liu, T; Duan, B; Zhai, P; Li, G *. Valence Bands Convergence in p-Type CoSb3 through Electronegative Fluorine Filling[J]. Chinese Physics Letters, 2024, 41, 077102.
[5] Huang, X; Zhang, X; Lu, Z; Ran, Y; Li, W; Duan, B; Li, G *; Zhai, P; Zhang, Q; Goddard, W. Deformation Mechanisms of Clathrate tI-Na2ZnSn5[J]. Journal of Physical Chemistry C, 2024, 128, 7370-7376.
[6] Huang, X; Zhang, X; Lu, Z; Li, W; Duan, B; Zhai, P; Li, G *. Deformation and Failure Mechanisms of Element-Substituted Thermoelectric Type-I and Type-VIII Clathrates[J]. ACS applied materials & interfaces, 2024, 16, 20835-20842.
[7] Yang, H; Wu, L; Feng, X; Huang, X; Wang, H; Duan, B; Li, G *; Zhai, P; Zhang, Q. Constructing Coated Grain Nanocomposites and Intracrystalline Precipitates to Simultaneously Improve the Thermoelectric and Mechanical Properties of SnTe by MgB2 and Sb Co-Doping[J]. Advanced Functional Materials, 2024, 34, 202316344.
[8] Ma, H; Huang, X; Lu, Z; Feng, X; Duan, B; Li, W; Liu, Y; Zhai, P; Li, G *; Zhang, Q. Origin of shear induced 'catching bonds' on half Heusler thermoelectric compounds XFeSb (X = Nb, Ta) and SnNiY (Y = Ti, Zr, Hf)[J]. NPJ Computational Materials, 2024, 10, 61.
[9] Huang, X; Zhou, X; Wu, L; Feng, X; Zhai, P; Duan, B; Li, G *; Zhang, Q; Goddard, W. A nanotwin-based physical model for designing robust layered bismuth telluride thermoelectric semiconductor[J]. Cell Reports Physical Science, 2024, 5, 101841.
2023
[1] Zhang, W; Yu, R; Xiao, C; Ma, H; Li, W; Zhai, P; Li, G *; Duan, B. Pressure induced bands convergence and strength enhancement in thermoelectric semiconductor β-InSe[J]. Journal of Alloys and Compounds, 2023, 947: 169687.
[2] Wang, H; Feng, X; Lu, Z; Duan, B; Yang, H; Wu, L; Zhou, L; Zhai, P; Snyder, G; Li, G *; Zhang, Q. Synergetic Enhancement of Strength-Ductility and Thermoelectric Properties of Ag2Te by Domain Boundaries[J]. Advanced Materials, 2023, 35(35): 202302969.
[3] Lu, Z; Huang, X; Zhang, X; Zhai, P; Goddard, W; Li, G *. A Physical Model of Nanotwin Unit and Orientation Organization for Designing Mechanical Performance: Cases of InSb, GaAs, ZnS[J]. Advanced Functional Materials, 2023, 2309174.
[4] Huang, M; Zhai, P; Morozov, S; Goddard, W; Li, G *; Zhang, Q. Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe[J]. Journal of Alloys and Compounds, 2023, 959: 170429.
[5] Huang, X; Feng, X; An Q; Huang, B; Zhang, X; Lu, Z; Li, G *; Zhai, P; Duan, B; Snyder, G; Goddard, W; Zhang, Q. Stacking fault-induced strengthening mechanism in thermoelectric semiconductor Bi2Te3[J]. Matter, 2023,6(9): 3087-3098.
[6] Wu, L; Feng, X; Cao, K; Li, G *. Toughening Thermoelectric Materials: From Mechanisms to Applications[J]. International Journal of Molecular Sciences, 2023, 24, 6325.
2022
[1] Huang, X; Deng, W; Zhang, X; Morozov, S; Li, G *; Zhai, P; Zhang Q. Enhancing the shear strength of single-crystalline In4Se3 through point defects[J]. Scripta materialia, 2022, 211: 114507.
[2] Lu, Z; Zhai, P; Ran, Y; Li, W; Zhang, X; Li, G *. Enhancement of mechanical properties of InSb through twin boundary engineering[J]. Scripta Materialia, 2022, 215:114734.
[3]Huang, M; Zhai, P; Li, G *; An, Q; Morozov, S; Li, W; Zhang, Q; Goddard, W. Nanotwin-induced ductile mechanism in thermoelectric semiconductor PbTe[J]. Matter, 2022, 6(5): 1839-1852.
[4]Zhang, X; Zhai, P; Huang, X; Morozov, S; Duan, B; Li, W; Chen, G; Li, G *; Goddard, W. Deformation and Failure Mechanisms of Thermoelectric Type-I Clathrate Ba8Au6Ge40[J]. ACS applied materials & interfaces, 2022, 3: 14.
[5] Zhang, X; Morozov, S; Lu, Z; Huang, X; Li, W; Li, G *; Zhai, P. Atomistic explanation of failure mechanisms of thermoelectric type-VIII clathrate Ba8Ga16Sn30[J]. Materials Today Communications, 2022, 31: 103605.
[6] Feng, X; Cao, K; Huang, X; Li, G *; Lu, Yang. Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance[J]. Nanomaterials, 2022, 12(12): 2113.
[7] Huang, B; Li, G *; Xiao, C; Duan, B; Li, W; Zhai, P; Goddard W. Compression Induced Deformation Twinning Evolution in Liquid-Like Cu2Se[J]. ACS Applied Materials & Interfaces, 2022, 16(14): 18671-18681.
[8] Ma, H; Yang, H; Zhang, X; Duan, B; Li, W; Zhai, P; Li, G *. First-principle predictions of the electric and thermal transport performance on high-temperature thermoelectric semiconductor MnTe2[J]. Journal of Alloys and Compounds, 2022, 898: 162813.
2021
[1]Li, G; An, Q; Duan, B; Borgsmiller, L; AlMalki, M; Agne, M; Aydemir, U; Zhai, P; Zhang, Q; Morozov, S; Goddard, W; Snyder, G. Fracture toughness of thermoelectric materials[J]. Materials Science and Engineering: R: Reports, 2021, 144: 100607.
[2] Lu, Z; Huang, B; Li, G *; Zhang, X; An, Q; Duan, B; Zhai, P; Zhang,Q; Goddard, W. Shear induced deformation twinning evolution in thermoelectric InSb[J]. NPJ Computational Materials, 2021, 7(1): 11.
[3]Huang, B; Li, G *; Duan, B; Zhai, P; Goddard, W. Temperature-dependent anharmonic effects on shear deformability of Bi2Te3 semiconductor[J]. Scripta Materialia, 2021, 202: 114016.
[4]Huang, B; Li, G *; Duan, B; Li, W; Zhai, P; Goddard, W. Order-Tuned Deformability of Bismuth Telluride Semiconductors: An Energy-Dissipation Strategy for Large Fracture Strain[J]. ACS applied materials & interfaces, 2021, 13(48): 57629-57637.
[5]Ran, Y; Lu, Z; Zhang, X; Li, W; Duan, B; Zhai, P; Li, G *. The influence of twin boundary on lattice thermal conductivity of thermoelectric InSb[J]. Applied Physics Letters, 2021, 119(16): 161601.
2020
[1] Li, G *; An, Q; Aydemir, U; Morozov, S; Duan, B; Zhai, P; Zhang, Q; Goddard, W. Intrinsic mechanical behavior of MgAgSb thermoelectric material: An ab initio study[J]. Journal of Materiomics, 2020, 6(1): 24-32.
[2]Li, W; Zhang, X; Duan, B; Huang, B; Huang, M; Li, G *; Zhai, P. Size effect on mechanical properties of nanotwinned Mg2Si from molecular dynamics simulation[J]. Computational Materials Science, 2020, 185(5895): 109972.
[3]Huang, M; Li, G *; An, Q; Zhai, P; Goddard, W. Structural failure of layered thermoelectric In4Se3-δ semiconductors is dominated by shear slippage[J]. Acta Materialia, 2020, 187: 84-90.
[4]Huang, B; Li, G *; Duan, B; Zhai, P; Goddard, W. Synergetic Evolution of Sacrificial Bonds and Strain-Induced Defects Facilitating Large Deformation of Bi2Te3 Semiconductor[J]. ACS Applied Energy Materials, 2020, 3(3): 3042-3048.
[5]Zhang, X; Li, G *; Duan, B; Chen, G; Yang, X; Zhai, P. Vacancy effect of antimony on shear deformation mechanisms of CoSb3 thermoelectric material[J]. Computational Materials Science, 2020, 182: 109761.
[6]Ma, H; Li, G *; Zhang, X; Huang,H; Duan, B; Zhai, P. First principle study of intrinsic point defects in Zintl-phase thermoelectric Eu2ZnSb2[J]. Journal of Alloys and Compounds, 2020, 843: 155981.
[7]Duan, B; Li, Y; Li, J; Cao, Y; Zhai, P; Yang, J; Lu, Z; Yang, H; Wang, H; Li, G *. Regulation of oxygen vacancy and reduction of lattice thermal conductivity in ZnO ceramic by high temperature and high pressure method[J]. Ceramics International, 2020, 46(16): 26176-26181.
2019
[1]Li, G; He, J; An, Q; Morozov, S; Hao, S; Zhai, P; Zhang, Q; Goddard, W; Snyder, G. Dramatically reduced lattice thermal conductivity of Mg2Si thermoelectric material from nanotwinning[J]. Acta Materialia, 2019, 169: 9-14.
[2]Huang, B; Li, G *; Yang, X; Zhai, P. Capturing anharmonic and anisotropic natures in the thermoticsand mechanics of Bi2Te3 thermoelectric material through an accurate and efficient potential[J]. Journal of Physics D: Applied Physics, 2019, 52, 42:425303.
[3]Huang, M; Yang, X; Chen, G; Li, G *; Zhai, P. Molecular dynamics simulations of the effects of nanopores on mechanical behavior in the Mg2Sn system[J]. Computational Materials Science, 2019, 161: 177-189.
[4]Deng, W; Li, G *; Zhang, X; Morozov, S; Goddard, W; Zhai, P. The Mechanism of Deformation and Failure of In4Se3 based Thermoelectric Materials[J]. ACS Applied Energy Materials, 2019, 3(1): 1054.
2018
[1] Li, G *; Aydemir, U; Morozov, S; Miller, S; An, Q; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Mechanical properties in thermoelectric oxides: Ideal strength, deformation mechanism, and fracture toughness[J]. Acta Materialia, 2018, 149: 341-349.
[2] Li, G *; An, Q; Morozov, S; Duan, B; Zhai, P; Zhang, Q; Goddard, W; Snyder, G. Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics[J]. Journal of Materials Chemistry A, 2018, 6(25): 11743-11750.
[3] Li, G *; An, Q; Morozov, S; Duan, B; Goddard, W; Zhang, Q; Zhai, P; Snyder, G; Ductile deformation mechanism in semiconductor α-Ag2S[J]. npj Computational Materials, 2018, 4(1): 44.
[4] Li, G *; Hao, S; Morozov, S; Zhai, P; Zhang, Q; Goddard, W; Snyder, G. Grain Boundaries Softening Thermoelectric Oxide BiCuSeO[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6772-6777.
[5] Li, G *; An, Q; Morozov, S; Duan, B; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Mechanical softening of thermoelectric semiconductor Mg2Si from nanotwinning[J]. Scripta Materialia, 2018, 157: 90-94.
2017
[1] Li, G; Aydemir, U; Wood, M; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Defect-Controlled Electronic Structure and Phase Stability in Thermoelectric Skutterudite CoSb3[J]. Chemistry of Materials, 2017, 29(9): 3999-4007.
[2] Li, G; Aydemir, U; Wood, M; An, Q; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Deformation mechanisms in high-efficiency thermoelectric layered Zintl compounds[J]. Journal of Materials Chemistry A, 2017, 5(19): 9050-9059.
[3] Li, G; Aydemir, U; Duan, B; Agne, M; Wang, H; Wood, M; Zhang, Q; Zhai, P; Goddard, W; Snyder, G. Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40488-40496.
[4] Li, G *; Aydemir, U; Wood, M; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics[J]. Journal of Physics D: Applied Physics, 2017, 50(27): 274002.
[5] Li, G *; Morozov, S; Zhang, Q; An, Q; Zhai, P; Snyder, G. Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb[J]. Physical Review Letters, 2017, 119(21): 215503.
[6] Li, G; Aydemir, U; Morozov, S; Wood, M; An, Q; Zhai, P; Zhang, Q; Goddard, W; Snyder, G. Superstrengthening Bi2Te3 through Nanotwinning[J]. Physical Review Letters, 2017, 119(8): 085501.
[7] Li, G; Aydemir, U; Wood, M; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Ideal Strength and Deformation Mechanism in High-Efficiency Thermoelectric SnSe[J]. Chemistry of Materials, 2017, 29(5): 2382-2389.
2016
[1] Li, G; Bajaj, S; Aydemir, U; Hao, S; Xiao, H;Goddard, W*; Zhai, P; Zhang, Q; Snyder, G. p-Type Co Interstitial Defects in Thermoelectric Skutterudite CoSb3 Due to the Breakage of Sb4-Rings[J]. Chemistry of Materials, 2016, 28(7): 2172-2179.
[2] Li, G; An, Q; Aydemir, U; Goddard, W; Wood, M; Zhai, P; Zhang, Q; Snyder, G. Enhanced ideal strength of thermoelectric half-Heusler TiNiSn by sub-structure engineering[J]. Journal of Materials Chemistry A, 2016, 4(38): 14625-14636.
[3] Li, G *; An, Q; Goddard, W; Hanus, R; Zhai, P; Zhang, Q; Snyder, G. Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3[J]. Acta Materialia, 2016, 103:775-780.
[4] Li, G; Hao, S; Aydemir, U; Wood, M; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Structure and Failure Mechanism of the Thermoelectric CoSb3/TiCoSb Interface[J].ACS Applied Materials & Interfaces, 2016, 8(46): 31968-31977.
2015
[1] Li, G; An, Q; Li, W; Goddard, W; Zhai, P; Zhang, Q; Snyder, G. Brittle Failure Mechanism in Thermoelectric Skutterudite CoSb3[J]. Chemistry of Materials, 2015, 27(18): 6329-6336.